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ABSTRACT: We investigate the sources of anomalies and noise in power spectrum 

projections based on randomly selected data. In specifically, speed data from a burst- 

mode laser Doppler anemometer is examined. The work suggests new approaches to 

dealing with issues like as noise and spectral bias. These include solving challenges that 

arise when the optimum Poisson sample rate varies due to dead time effects and sample 

rate-velocity correlations. Researchers have already discovered that the effects of noise 

and dead time in recordings with a fixed length of time are comparable to those detected 

in recordings with an infinite length of time and group averages. We demonstrate that the 

measured sampling function may be employed in a deconvolution method to remove 

noise and dead time from the spectra of finite recordings. We also provide a novel power 

spectrum predictor that employs a sped-up version of the slotted auto-covariance 

algorithm. 

Keywords: Noise And Distortions, Power Spectral, Randomly Sampled Data, Randomly 

Sampled Data 

1. INTRODUCTION 

Several academic studies have used arbitrary data to determine the power spectrum of a 

dynamic process. The previously cited publications include those by Albrecht et al. 

(2003), R. B. Blackman and J. W. Tukey (1958), H.S. Shapiro and R.A. Silverman 

(1960), and Durst et al. 



1171 JNAO Vol. 13, Issue. 2: 2022 
 

Each has distinct advantages and disadvantages in general. 

It is possible to acquire power spectrum values that are alias-free, sufficiently stochastic 

(for example, a Poisson process), and independent of the process being sampled. 

Estimates derived from similarly selected often occurring data have lower variability. 

This is partly due to the sample technique's random nature, which demands additional 

data or a longer sampling time. Several power spectral estimators have tackled the issue 

of laser Doppler measurements of turbulence spectra. Numerous studies have been 

conducted to assess the advantages and disadvantages of various tactics, but no final 

result has been reached. 

Gaster and Roberts devised the direct technique for measuring the power spectrum (PS) 

using a modified periodogram in the early 1970s (1977). In 1978, Masry undertook more 

study to determine the significance of aliasing-free bands. Researchers Roberts and 

Gaster (1980) and Roberts et al. (1980) investigated the methodologies used in LDA 

processors. Buchhave et al. created the first weighted PS algorithms with residence time 

in 1979. These algorithms destroyed the link between sample rate and performance. 

Gaster and Roberts (1975) offered an alternative strategy based on Mayo's work (1974). 

To obtain the PS, they first computed the autocovariance and then used a Fourier 

transform. There are several issues that early estimators face when dealing with big 

variances at high frequencies. Several studies (e.g., Tropea, 1995; Benedict, Nobach, and 

Tropea, 2000) eventually addressed this issue. The importance of fuzzy slot width must 

be highlighted. Several writers have updated the slotted autocovariance approach 

(SACF), including Tummers and Passchier (1996), van Maanen et al. (1999), and 

Nobach (1998). One of the planned changes is to the slot width. Nobach (2002) and 

Benedict et al. (2000) discuss slotted correlation function real-time estimates. Benak et 

al. (1993) explored the link between particle rate and slot breadth. 

Another popular strategy is the "sample-and-hold method," which interpolates velocity 

data. Adrian (1987) shown in a previous work that resampling a detected velocity value 

can dramatically affect the computed spectrum, resulting in a different measurement. 

Following that, many interpolation approaches and filter function correction 

reconstruction efforts were investigated, including those of Simon (2004) and Moreau 

(2011). 

Many advances have been achieved in estimating the power spectrum from LDA data 

using these techniques; however, for the sake of this study, we shall confine our use to 

the basic estimators of the straight technique and the SACF method. To correct spectral 
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bias caused by the sample rate in the spectrum, the use of a raw sampling device 

becomes critical. Refining and filtering techniques are likely to modify the sample 

function, making it useless for rectification approaches. In fact, the raw data clarity of the 

signal reduces the accuracy of spectrum computations. It is more likely that problems 

with data processing, rather than the power spectrum in general, will be discovered 

during future efforts to improve quality. 

Overall, the theory is presented in a very simple fashion; the samples are envisioned as 

point processes (particularly, delta function samples), and the conclusions are achieved 

through ensemble averages across an infinite number of records or recordings of infinite 

length. We want to begin with a limited collection of previously measured places, just 

like with real measurements. Examining potential real-world concerns that could have a 

major impact on spectral estimates is also critical. Examples include the effects of 

instrumental dead time, random sampling noise, and finite width sample pulses. 

The primary goal of this research project is to study the feasibility of employing 

deconvolution techniques to rectify the power spectrum produced from observational 

data. The final power spectrum is generally formed by combining a number of spectral 

filters established by noise introduction or sampling rate changes. To adjust the 

spectrum, we analyze numerous effects in time delay space and divide the measured 

function's autocovariance by the autocovariance of the sample technique. Deconvolution 

is obviously tough, especially when dealing with noisy data, and diverse approaches may 

not always be beneficial. It has been discovered possible to reduce some of the bias and 

noise caused by less-than-ideal measurement procedures. 

The impact of biases and noise on power spectra from real instruments will be discussed 

in further detail in the following sections. In addition, we will use tactics such as 

deconvolution to counteract these consequences. Our experiments into turbulent velocity 

power spectra using the laser Doppler anemometer (LDA) yielded interesting results. 

Furthermore, we are confident that our approaches will be beneficial in solving a wide 

range of difficulties. Some of the statistics came from recent studies on dead time effects 

in power spectrum estimation (Frontera and Fuligni, 1978; Zhang et al., 1995; Buchhave 

et al., 2014; and Velte et al., 2014b). In contrast, this study does practical evaluations 

using a small sample size utilizing burst-mode LDA. To accomplish this, we offer a 

unique notion called the noise function, which evaluates the unpredictability of a 

particular collection of data. 
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Properties of LDA data 

2. BACKGROUND WORK 

This study will focus on the features of LDA data that affect power spectrum estimation. 

We are particularly interested in burst-mode LDA, which generates a single velocity data 

point when a seed particle passes through the measuring volume formed by the 

intersection of two coherent laser beams. It is also believed that the processor calculates 

the particle's arrival time and motion duration within the measuring space. The latter is 

known as "residence time." It is assumed that the particles are evenly distributed 

throughout the fluid. With the appropriate volume reduction and consistent speed, there 

is little likelihood of detecting many particles at the same time. This procedure is called 

Poisson sampling. Despite this, the velocity bias causes the sample rate to vary in 

lockstep with the velocity. This occurs when particles move faster across the 

measurement space than they would at a slower rate. 

Starting here, the sampling rate is assumed to be proportional to the magnitude of the 

instantaneous motion within the volume in question. It is also believed that residence 

time weighted (RTW) techniques are used to compute mean velocity, velocity 

autocovariance function (ACF), and velocity power spectrum (PS). Using these 

strategies, velocity bias can be reduced from statistical results (George et al., 1978; 

Buchhave et al., 1979; Velte et al., 2014a). Consider speed as a new, objective speed data 

point that may be used in statistical computations to acquire a better understanding of the 

concept. To do this, multiply the velocity by the time of the stay. In the subsequent 

theoretical analysis, this number will replace the measured velocity data point. As a 

result, the process under study and the sampling approach might be regarded statistically 

separate. Figure 1 depicts the theories behind the averaging and inactive time effects. 

 

Figure 1. The sampling process (Buchhave (2014). 

The image shows the envelope of a Doppler burst, which is an electrical signal generated 

when a particle enters the measurement chamber and is detected by the receiver as 

Doppler-modulated light. Using the augmented and filtered detector signals, the signal 
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processor derives the modulated discharge's Doppler frequency. When the signal hits the 

burst detection threshold, the signal processor begins rapidly digitizing it. An FFT 

analysis will then be performed to generate a calibrated velocity data point. The collected 

velocity data point is then transferred to the data processor or an intermediate buffer 

storage for further processing. Given that computing the Doppler frequency needs a 

certain number of digital samples, the image shows that the processing time (tp) is 

constant. 

We'll assume that the task's average pace during execution reflects the impact of this 

processing time. Buchhave (2014) discovered that the high frequency section of the 

spectrum is filtered, and the average decreases. The residence time ts, also known as the 

burst length, is related to the maximum processing time that can occur so that tp is less 

than ts. To account for the minimal ts predicted by the measurement, the actual 

processing time must be adjusted. The signal processor is unable to evaluate the signal of 

the next particle because it falls below the threshold until the burst detector is restarted. 

This is referred to as "dead time." The figure shows that the signal processor stops 

operating during the inactive time, or td. Because of this, the dead time effect may affect 

the power spectrum estimate, and the latency used to generate the ACF estimate must be 

shorter than the delay between samples. (2014) The author is Buchhave. Accurate LDA 

measurements of turbulence are difficult to achieve due to light interference between two 

or more particles in the measuring volume, as well as significant particle speed variation, 

which both impact residence time measurements. As indicated in Velte (2014b), more 

research into the influence of inactive time complicates the model and computations. The 

idle period causes an unwanted loss in power at the low end as well as an oscillation at 

the high end of the spectrum. Following that, we will look at the features of random 

sampling noise and how noise, filtering, and dead time interact to generate the spectrum. 

 

3. RANDOM SAMPLING NOISE 

Frequency content of the noise 

Reexamine Equation (1) to determine the consequences of scattering the samples. 

 (1) 

The second component, a convolution, consists of the real spectrum and a zero-mean noise 

term made up of sampling exponentials with random phases and distinct, predictable 
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fluctuations. The spectral estimate corresponds to the measurement's kk noise levels. 

Convolution, which is equivalent to the restricted resolution that may be achieved with a 

limited set of routinely sampled data, broadens the spectrum when the record length is 

limited. 

The convolution with a potential mean velocity is eventually found to be added to the noise 

term. 

 (2) 

In light of this, the power spectral estimate should be used after subtracting the mean. This 

inquiry produces all spectrum values for the portion of velocity that varies. 

 

Figure 2 shows the spectral distribution, which includes the determined offset (broken line), 

frequency-dependent noise (cross-hatched area), and the overall observed spectrum (solid 

line). 

Examine the noise function or the convolution integral of the cross terms to determine this 

.  (3) 

The frequency spectrum of the noise shows the dispersion of the velocity spectrum; noise 

becomes more noticeable as the spectrum expands. The cross-hatched region in Figure 2 

shows how the power spectrum estimate was distorted by the small sample size. The 

combination of the spectrum and noise function generates high frequency noise in the form of 

a narrow spectral band. Low frequency noise, on the other hand, is caused by wide-band 

operation. The sinc-squared frequency function eventually blends with the spectrum as the 

sample rate rises and the record length remains constant. As a result, the commotion 

decreases. Because of the horizontal temporal window, this happens. Figure 3 depicts the 

power spectrum of a spectral line with a single record calculated using the direct technique at 

both a low sample rate (in the middle) and a high sample rate (on the left). When the real 

spectrum and the noise function are merged, the range of frequencies in the noise changes, 

indicating that the true spectrum has a limited frequency range. The introduction of self- 
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products results in a spectrum shift in all three cases. The variance equation shows that the 

high frequency section of the spectrum, which is unaffected by the true spectrum, has two 

components: a constant spectral offset and a mean fluctuation of zero caused by the stochastic 

nature of the sample arrival times. It is clear that the spectrum keeps a value greater than zero 

even after the self-products are deleted. This is in contrast to a spectrum in which the true 

spectrum approaches zero at frequencies while the spectrum excluding the self-products 

fluctuates around zero due to random sampling noise. 

 

Figure 3 depicts the power spectrum of a minute amount of computer-generated velocity data. 

A thin spectral line and a high sampling rate are shown on the left. The midway is defined by 

a thin spectral line and a low sampling rate. The sample rate is low, and the line to the right is 

broad. 

 

4. CORRECTING THE POWER SPECTRUM BY DECONVOLUTION 

Theory 

A variety of factors have been shown to skew the observed power range. According to 

multiple sources, the real spectrum is multiplied by a sinc-squared transfer function to 

account for the processing time (tp) required to digitize and analyze the Doppler burst while 

measuring velocity. If you understand TP, you should be able to get an accurate spectrum 

estimate by simply dividing the frequency space by the transfer function.: 

(4) 

However, its overall influence is far lower than that of inactive time. 

Regaining lost time. A potential dead time is represented in the frequency space of the real 
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spectrum by combining a convolution and a dead time function, assuming the averaging 

effect is taken into account. To apply the necessary correction, divide the correlation space by 

a known ACF dead time. A predetermined inactive time is required for this strategy to be 

much more user-friendly (Buchhave, 2014). Nonetheless, the variation in dwell time in 

empirical LDA data complicates this process (Velte, 2014b). However, by using the sampling 

function ACF, you can change the PS for any method that affects the sample rate, even those 

affected by dead time and noise. 

Correcting for random sampling noise 

As illustrated in the given source, random sampling noise can be thought of as a mixture of 

the record-specific noise function and the expected real spectrum after accounting for dead 

time and filtering. Noise is created when a velocity ACF is multiplied by a noise ACF in 

correlation space. To eliminate noise during the reconstruction process, the recorded velocity 

ACF would be divided by the noise function ACF. 

 

(5) 

The good news is that the arrival dates from the measured record can be used for 

deconvolution. 

Deconvolution by means of the measured sampling function ACF 

The ACF, or measured sampling function, has the ability to minimize the detrimental impacts 

outlined above. When considering the filtered spectrum ,S0tp , t is possible to mix up the 

dead time and noise functions. 

 

(6) 

Multiplying three ACFs in correlation space yields the following results: 

 

(7) 

ACF stands  for the measured sampling function.. To get a spectrum free of both dead 

time and noise, divide the spectrum in correlation space by the observed sampling function 

ACF. 

 (8) 

Indeed, the ACF (measured sampling function) includes all variables that can influence the 

sample rate, such as dead time effects, electronic filtering effects, and random sampling. The 

lack of velocity bias can be due to dwell time weighting. Given that the measured sampling 
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function is the product of two delta functions, it is unclear how this division can be carried 

out. The following two sections will go over two different techniques to carrying out the plan. 

It was expected that different spectral estimators would produce diverse dead time and noise 

effects. 

Implementation of Deconvolution 

Real-world programming use a variety of methods for measuring the power spectrum. 

Following that, the slotted autocovariance method and direct deconvolution techniques will 

be discussed. To validate the results, the methodologies will be applied to velocity data 

collected from a turbulent free jet in the air, as well as computer-generated velocity data. 

Buchhave delivers in-depth analysis of computer-generated data. A Poisson process and a 

Von Karman power spectrum were used to create random samples from a high-speed main 

velocity record. The Von Karman spectrum was chosen to simulate the jet spectrum with 

extraordinary accuracy. 

(9) 

Using the formula l = 2 var(u) / S(0), one can calculate the integral time scale of this process. 

In response to performance, we adjusted the Poisson process to produce only ones and zeros 

(with very few twos). This was done so that velocity bias may be incorporated. Despite the 

presence of additional phase noise on the computer systems, this data was excluded from the 

presentation. The insertion of it would simply raise the spectrum's noise threshold. Velte 

(2014a) provided an overview of the jet data. 

Directly using data generated by computers Prior to selecting speed samples at random, the 

power spectrum is computed utilizing a DFT with frequencies that are equally spaced 

according to a random sampling function. Following that, significant ACFs are found by 

performing an inverted FFT on these spectra. Following that, we divide in accordance with 

Equation (8) before returning to frequency space via FFT. Following the repeat of the method 

for M recordings, the final spectrum is calculated using block averaging. The sample function 

ACF could have zero or negative values due to random sampling noise, which could be 

troublesome for this approach. Such values may cause instability into the division process. 

Individuals typically apply a Wiener deconvolution, which includes appending the mean 

square noise to the denominator, or a small, constant value to Cg n order to sidestep this 

difficulty.(As it happens, the constant is unnecessary when the block average contains a large 

number of records. The process of averaging eliminates the sharpness associated with 
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infinities and negative spectral values. The power spectrum of the computer-generated data 

collection depicted in Figure 4 can be obtained through the utilization of the following 

parameters: a mean speed of 5 ms-1, a turbulence strength of 25%, a record length of 1 s, an 

average of 200 recordings per block, a sampling rate of 4500 s-1, and a measuring volume 

diameter of 40 m. 

 

The power range of the computer-generated velocity data is illustrated in Figure 4. The 

power spectrum subsequent to deconvolution is depicted in red, while the Von Karman 

model spectrum is represented in green. The direct procedure is visually represented in blue. 

Both have, on average, over two hundred records.Three shapes are depicted in the image: 

The yellow trace represents the Von Karman spectrum model, upon which the computer- 

generated data was derived. The direct method was utilized to compute the power spectrum, 

which is visually represented by the blue graph. In contrast to the blue curve, the red curve 

represents the result of the deconvolution procedure that was previously discussed. It is 

evident that careful consideration has been given to the impact of inactive time. Although 

deconvolution may appear to introduce additional noise, it is critical to bear in mind that the 

observed image is logarithmic in nature, indicating that alterations are more conspicuous at 

lower frequencies. A block average of two hundred records eliminates additional 

disturbance. Both the red and blue spectra are generated using identical source data in an 

identical manner. 

 

5. CONCLUSION 

A number of effects that would occur in an actual experiment could be described by 

describing data extracted at random from a burst-mode LDA using a logical sampling 

function. These encompass dead time effects, which occur when the processor is unable 

to generate data with an excessively short interval between samples, averaging due to 
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the constrained processing time required to calculate velocity, and the noise function, 

which provides details regarding noise in time delay space or frequency space for a 

given record. Furthermore, we provided evidence that the intended power spectrum 

estimation of a solitary velocity record can be calculated by integrating the real power 

spectrum, a "dead time function" (which considers the impact of dead time), and a 

spectral noise function. In the time delay space, the ACF noise function, the real 

velocity ACF, and the dead time ACF are all merged. This product is identical to the 

frequency space convolution. On the basis of the observed arrival times, the ACF of the 

measured sample function is precisely the sum of the ACFs for dead time and noise. 

In order to streamline the recorded power spectrum, the observed velocity ACF is 

divided by the measured sampling function ACF. Implemented within time delay space. 

It is possible to obtain the corrected measured power spectrum by Fourier transforming 

the adjusted calculated F. It is believed that the combination of the dead time function 

and the noise function can be regarded as components of a more comprehensive 

sampling function, which encompasses all factors that influence the sample rate and 

introduce bias into the power spectrum being measured. Altering the sampling rate may 

also be accomplished through instrument-specific operations, such as quantization or 

compression of the data. We employed two distinct spectrum estimators in our 

experiments: the straight technique and the slotted autocovariance method. By 

employing a novel approach, we successfully obtained the slotted autocovariance with 

significantly reduced computation time and equivalent spectrum quality to that of prior 

algorithms. Deconvolution appears to perform admirably with realistic computer- 

generated data. Dead time has little impact in both scenarios, and the practical dynamic 

range expands substantially until noise dominates the spectrum. 
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